
c© The CodeBreakers-Journal, Vol. 1, No. 1 (2004)
http://www.CodeBreakers-Journal.com

Keygen Injecton

Kwazy Webbit

Abstract

This essay will teach you a technique I’ve first developed while writing my essay on cracking PaneKiller. A lot of people have
come up to me recently, and told me they really enjoyed it. This technique is what I call ”keygen injection”. (I called it ”Kwazy
Webbit style” in the other essay, but that seems arrogant and immature afterwards. Hence, I changed the name.) Basically,
what it does is the following: If the serial is correct the program still registers like normal. If the serial is incorrect, control
is transferred to our code placed INSIDE the program essentially turning the program into its own keygen. Sounds pretty leet,
huh? Well.. Read on is all I can say.

Keywords: Keygen Injection; Adding Functionality; Notepad

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

I. Practical uses

As a cracker, I’m sure you already know what a keygen is. It is used for name/serial protections. It is a program that lets
you enter your name in an editbox, and when you press the button the program starts calculating. It calculates the registration
code that matches the entered name. (Either by brute-force or by a reversed hashing algorithm). It then enters the code in
another editbox. The general idea is, as you see, fairly simple. But the calculations that go on behind the scenes differ with
(almost) every target program. Some protections take quite some time and effort to completely reverse. Just think of the endless
deadlistings we’ve all seen from time to time. It is not uncommon for a program to endlessly hash the username into a code,
which is then compared with the entered registration code.

To get a valid serial for these protections is (needless to say) piss-easy. All you have to do, is find out where it compares the
two codes and use a debugger to ’fish’ the serial. (If you do not understand that, I suggest you read my essay ’Cracking Like
Kwazy’ or one of the other million available cracking essays on the subject)

To create a keygen for this type of protection however, can take a lot of effort. You have to copy the entire username-
hashing routine into your keygen, and then only the trivial task of displaying the matching reg code remains.

With the technique I’m about to show you, you will be able to skip the first part. (Yup, the username-hashing..) This will save
you a lot of time and effort, simply by understanding how programs work.

II. Getting started

Alright, sounds nice. How do I do it?

Well, we start with serial-fishing. I’m assuming we all know how that is done. Now you’ve already found the memory
location where it compares the serials. After that, there is usually a conditional jump. One way leads to the ”Wrong Code”
messagebox, and the other to the ”Thank you” messagebox. You all know the routine. Now what if we changed the location
that jump points to? What if we made it point to our own code at a certain location? We could run our own keygen-code,
instead of displaying that ”Wrong Code” messagebox, and after that just do whatever the program would have normally done.

This is all fairly abstract, maybe an example will clear it up :

Original code:

CMP EAX, EBX ; EAX=our serial | EBX=correct serial
JNZ WrongCode ; Not the same? Then display "Wrong Code"
.. ; This is where the "Thank You" stuff is.

Code after changes:

CMP EAX, EBX ; EAX=our serial | EBX=correct serial
JNZ KeyGen ; Not the same? Then run the built-in keygen.
.. ; This is where the "Thank You" stuff is.
..
.. ; All the other code of the program.
..
Keygen: ; We place our keygen at a convenient location.
.. ; Display the RIGHT serial.
JMP WrongCode ; Continue the program as normal.

; (We wouldn’t want the program to find out
; we were messing with it, now would we? =)

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

2

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Of course we haven’t made that built-in keygen yet, we’ll get to that later. What is important now, is that you understand
how you can easily intercept the jump to the ”Wrong Code” box, and use it to your own advantage. There is a difficulty in
doing this. For example, you have to make sure you dont run into any problems with stack and you have to preserve certain
registers. Don’t worry, you won’t have to simply think up what will have to be done. You can simply copy what the program
would have done if it were to get a wrong serial. I’ll give you another (more concrete) example to illustrate :

..
:00401269 39058B104000 cmp dword ptr[0040108B],eax ;our code == correct code?
:0040126F 7516 jne 00401287 ;jump if not equal
:00401271 6A00 push 00000000 ;push MB_OK
:00401273 6866104000 push 00401066 ;push lpGoodWork
:00401278 685A104000 push 0040105A ;push lpYouDidIt
:0040127D FF7508 push [ebp+08] ;push hWin
:00401280 E869020000 call 004014EE ;call MessageBoxA
:00401285 EB14 jmp 0040129B ;jump past the "bad code" messagebox
:00401287 6A00 push 00000000 ;push MB_OK
:00401289 687D104000 push 0040107D ;push lpBadCracker
:0040128E 6871104000 push 00401071 ;push lpYouSuck
:00401293 FF7508 push [ebp+08] ;push hWin
:00401296 E853020000 call 004014EE ;call MessageBoxA
:0040129B E97D010000 jmp 0040141D
..
:0040141D FF7514 push [ebp+14] ;push lParam
:00401420 FF7510 push [ebp+10] ;push wParam
:00401423 FF750C push [ebp+0C] ;push uMsg
:00401426 FF7508 push [ebp+08] ;push hWin
:00401429 E89C000000 call 004014CA ;call DefWindowProcA
:0040142E C9 leave ;
:0040142F C21000 ret 0010 ;return from the WndProc
..

This (very simplistic) code works as follows:

It checks if the code we entered is correct. If so, It displays a MessageBox with a text ”registered” or something to that
effect.

If not, it displays a similar MessageBox, with a ”bad code” like text. That it displays a messagebox is not interesting to
us at this point. What IS interesting however is the fact that AFTER the ”bad code”-MessageBox, we see:

:0040129B E97D010000 jmp 0040141D

As we can see, it jumps to the end of the WndProc and calls the DefWindowProcA function, while keeping ESP just the way
it is (no POPs, PUSHes or other funny business)

The hell you say! It pushes 4 things onto the stack!

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

3

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Well, DefWindowProcA is defined as being

LRESULT DefWindowProc(
HWND hWnd, // handle of window
UINT Msg, // message identifier
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);

So, they’re just parameters to the DefWindowProcA function. Also, notice that none of the parameters are dependant on
registers (no PUSH EAX or anything like that). So we can just redirect the

:0040129B E97D010000 jmp 0040141D

to point to our keygen routine. And, as long as we preserve ESP and jump back to 0040141D afterwards, We can do whatever
we want.

YEEEEEEEHAAAWWWW!!! I’M THE KING OF THE WOOORLD!!!

Well.. within limits.

sigh*

III. Hands-on experience

I assume you understand the basic principle now. The next step is seeing this technique in action. Get the example target first.
The zip file contains these files:

• The original exe, with 3 different protections, called InjectMe.exe
• The exe with a built-in keygen for type 1 protection, called InjectMe1.exe
• The exe with a built-in keygen for type 2 protection, called InjectMe2.exe
• The exe with a built-in keygen for type 3 protection, called InjectMe3.exe
• A file called InjectMe3.exe.txt used for type 3 protection

This program was made to be without (m)any complications.. You will not find many targets in ’the real world’ this easy,
but I found it would be the best way to illustrate this technique. Best to learn it clean, and then start dealing with complications.

As said, I made a program with 3 different protections..

They range from perfect for our needs (type 1), to not well suited for it (type 3). I’ll show how to use this technique on
all the protections.. Starting with the easiest one, going up to number 3.

A. Protection 1 - Plain and simple

Lets take a look at the first protection (open it up in wdasm or run through a debugger like Softice). Its code starts at 401069h.
(I’m sorry, but this section will have a lot of deadlistings. I normally dislike essays that lean on them too much, but I saw no
proper alternative in this case)

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

4

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

As you (hopefully) can see, it first calls GetDlgItemTextA to get the Name you entered out of the editbox.

:00401069 6A14 push 00000014 ;push 20 (14h)
:0040106B 8D45EC lea eax, dword ptr [ebp-14] ;load address of buffer into eax
:0040106E 50 push eax ;push the address of the buffer
:0040106F 6A64 push 00000064 ;push 100 (64h)
:00401071 FF7508 push [ebp+08] ;push dword at[ebp+08]

;(in the wndproc, thats where
the hWnd is stored)

* Reference To: USER32.GetDlgItemTextA, Ord:0102h ;Now that the parameters are
all pushed

;neatly onto the stack,
the program can call

:00401074 E85B020000 Call 004012D4 ;the GetDlgItemTextA function
to make it all happen.

Use win32.hlp for this kind of stuff, if you don’t already know them from memory. Here’s the definition of GetDlgItemTextA:

UINT GetDlgItemText(
HWND hDlg, // handle of dialog box
int nIDDlgItem, // identifier of control
LPTSTR lpString, // address of buffer for text
int nMaxCount // maximum size of string

);

After that code, whatever was typed into the editbox, is now in memory at location [ebp-14]. Run the program through a
debugger and check this yourself. GetDlgItemTextA returns the amount of characters it has gotten in eax. The program uses
this for a quick check, and fills in the name ’lamer’ if nothing was entered:

:00401079 85C0 test eax, eax ;no characters gotten?
:0040107B 7473 je 004010F0 ;go and fill in ’lamer’ into the editbox

The program now completed its first step in the registration routine. Getting the user’s name. What’s next? That varies from
program to program.. They all basically do the exact same stuff.. But the way they do it, and the order is different occasionally.

In this case, the next part is:

:0040107D 8D55EC lea edx, dword ptr [ebp-14] ;load address where
name is stored into eax

:00401080 52 push edx ;push that address
:00401081 E8FD010000 call 00401283 ;call an internal function

Basically, this is a function that has as its parameter our name.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

5

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

This could be almost anything.. It could be a routine that converts the name to uppercase, it might be a hashing algorithm, it
could even be a simple function to return the length of the name. There’s no way to know without looking in the function,
and studying its code in a deadlisting...

Urgh, do we really NEED to know what it does?

However...

Yes?

For this technique I’m about to show you, you won’t actually need to know what the program is doing up to where it
compares the two codes.

Wow, I actually didn’t expect that.

So let’s just step over it in a debugger, and peek at what it returns just for the sake of being able to make an educated
guess. :) It seems to leave the string unchanged. (to which it had access too, dont forget the ADDRESS of it was pushed, so
it could have modified the contents of that as well) It returns (in EAX of course) a mysterious number... Could perhaps be the
hashed username. Again, this is pure speculation. It might just as well some random number that is never used again.

Lets just keep going. Next we see this:

:00401086 50 push eax ;The mysterious number gets pushed to the stack

* Possible StringData Ref from Data Obj ->"%lu"
|

:00401087 6809304000 push 00403009 ;a pointer to the string "%lu" is pushed
:0040108C 8D45E3 lea eax, dword ptr [ebp-20]

;load the address of ebp-20 into eax
:0040108F 50 push eax ;push that address

* Reference To: USER32.wsprintfA, Ord:02A5h
|

:00401090 E827020000 Call 004012BC ;call wsprintf

To understand what this does, you will need to understand the wsprintf function. Wsprintf is a function used for making it
very easy to print out numbers, characters and strings, all in one text. To do this, it uses something known as a format-control
string. In short, it is a string that has special notations for letting you print out numbers as well (converting them to ascii
automatically for you). For example, ”%i” means the first parameter should be assumed to be a signed integer, and printed out
in decimal. Here’s the official definition of the function:

int wsprintf(
LPTSTR lpOut, // pointer to buffer for output
LPCTSTR lpFmt, // pointer to format-control string
... // optional arguments

);

Say for example, I want to print out a value called num as a decimal and a hexadecimal number. I would use a call similar
to this:

wsprintf(lpBuffer,"decimal: %i , hexadecimal: %x",num,num);

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

6

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

You get the idea right? If not, you should read up on some win32 coding, there are plenty of resources available. Whats
important here, is that this function call is basically:

wsprintf(lpBuffer,"%lu",value);

With the buffer located at [EBP-20]. In short, after this call the 32bit integer will be printed out as text at [EBP-20]. I guess
its gonna do something with that return value after all.. :)

Back to the deadlisting:

:00401095 6A14 push 00000014 ;nMaxCount
:00401097 8D45EC lea eax, dword ptr [ebp-14]
:0040109A 50 push eax ;lpString
:0040109B 6A65 push 00000065 ;nIDDlgItem
:0040109D FF7508 push [ebp+08] ;hDlg

* Reference To: USER32.GetDlgItemTextA, Ord:0102h
|

:004010A0 E82F020000 Call 004012D4

I guess I’ve already explained this function, so I’ll just quickly translate to C source to clarify:

GetDlgItemTextA(hWnd,101,lpBuffer,20);

So, the text that was in the editbox who’s ID was 101 is now stored at [EBP-14] (with a maximum size of 20 characters). A
quick check using:

:004010A5 85C0 test eax, eax
:004010A7 745B je 00401104

verifies that some text was actually gotten from editbox 101, and if there is the program can continue at 4010A9h (the next
instruction). The program now has our name. It also has the serial number we entered. It now has all the elements it needs to
check if our serial name is correct. Lets see where it goes from here..

:004010A9 8D45E3 lea eax, dword ptr [ebp-20]
:004010AC 50 push eax
:004010AD 8D45EC lea eax, dword ptr [ebp-14]
:004010B0 50 push eax

* Reference To: KERNEL32.lstrcmpA, Ord:02D6h
|

:004010B1 E83C020000 Call 004012F2

Looking up what this function does in win32.hlp gives us the following definition:

The lstrcmp function compares two character strings. The comparison is case sensitive. If the strings are equal, the return
value is zero.

Lets look at the parameters it gets first. If you’ll remember, EBP-14 holds our entered registration number, and EBP-20
is where the username hash was stored. It just compares if the two are equal.

Oh Come on. No real protection is that simple!

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

7

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

The same cracking method applies to larger, more chaotic protections.. This is a simple example to show how the technique
itself works. After the lstrcmp is ’ye olde eax test’ (You’ve probably seen it a million times):

:004010B6 85C0 test eax, eax ;eax=0? (are the strings equal?)
:004010B8 0F8519000000 jne 004010D7 ;if not, show BAD CRACKER messagebox

Finally, we’ve reached the point where we finished analysis of this protection.. Now we can start the actual cracking of the
target. After this, we can use the regular methods again..

• Patching: NOP the JNE so it will never jump.
• Fishing: Look at the lstrcmp to see what the serial for our name was, and use that.

Usually my favorite, as it takes least work and you still registered the program the right way.. By getting a valid serial.

• Keygenning: Analyse the call at:

:00401081 E8FD010000 call 00401283 ;call an internal function

to make a key generator (most good release groups would do this) Now, lets combine all three at once... Patching the .exe so
we can have both the ease of serialfishing and the flexibility of a keygenerator. Lets start this example from the serial-fishing
point of view, as it is most similar. To get a valid serial for our name, we would use a debugger and go all the way to the
lstrcmp, and simply look at the text at EBP-20 to see what our serial should have been. Now lets use the programs structure
against itself. The JNE is a definite weakness for example:

:004010B6 85C0 test eax, eax ;if eax is not 0, you entered the wrong code
:004010B8 0F8519000000 jne 004010D7 ;<- an easy to manipulate jump

Good, lets look at where some free space is inside the .exe file.

NOTE:
I wont overwrite the ’bad cracker’ messagebox this time, like i did in my previous essay. I’ve realised there isnt
always enough space, which generally leads to bad cracking habits. You well end up messing around too much inside
the .exe possibly damaging it in the process. I’ve decided to explain it properly this time, so you won’t run into
trouble.

Time to open up the file in HIEW for a look in the PE header (F8). Pressing (F6) brings up the object table with its properties.
You can use any program you want to to view the PE header.. I just normally use HIEW. Regardless what you use, you will
find the object table to be as follows:

Name VirtSize RVA PhysSize Offset Flag
1 .text 000002F8 00001000 00000400 00000400 60000020
2 .rdata 000001A6 00002000 00000200 00000800 40000040
3 .data 0000005B 00003000 00000200 00000A00 C0000040
4 .rsrc 00000230 00004000 00000400 00000C00 C0000040

A PE-file (Portable Executable) consists of several objects. Each has its own location, size and flags. One is for the data (and
has read/write flags), the other for the code (with the executable flag).. Etc. This shouldnt be a PE document, if you need info
on the PE file format, there are lots of essays released already. PE.pdf is in the RE section of my site, in case you need to
read up on some things. The ’.text’ object is where the rest of the code is too, so its a nice place to put our keygenerator..
You can put the keygenerator into any object you want to, dont get me wrong. However since we have to pick one anyway,
this one already has the executable flag that is needed to execute the code.. We might as well use it. IF it has enough room
that is.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

8

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Lets check it out:

Name VirtSize RVA PhysSize Offset Flag
1 .text 000002F8 00001000 00000400 00000400 60000020

It has a VirtSize of 2F8h , which is the size of the actual code.. And it has a PhysSize of 400h, which is the code filled up
to the nearest multiple of 200h (or the file alignment for the nitpickers ;) That gives us a total of 400h-2F8h=108h bytes of
unused padding inside the ’.text’ object. (264 bytes in decimal) You gotta love the PE format for leaving us reversers with all
that space. Let’s also have a quick look at where we can begin to edit.. The Offset (the start of the object in file) is 400h..
The original code takes up 2F8h bytes, we can start at offset 400h+2F8h=6F8h in file. Lets round that off to a nice (and
easy to remember) 700h. Thats the location where our keygenerator will be placed. We also need one more thing, we need
to know the Virtual Address of that location. Luckily, its all perfectly easy to find in the PE header. The Image Base (the
address at which the program itself is loaded into memory) of the program is 400000h. The RVA (Virtual Address Relative to
the Image Base) of the ’.text’ object is 1000h. Another simple calculation brings us to conclude that the ’.text’ object will be
at 400000h+1000h=401000h in memory. The keygen will thus be located at 401000h+300h=401300h (we rounded the 2F8h
up to 300h remember?) We now have everything we need:

File Offset Space Virtual Address
700h 100h bytes 401300h

Let’s figure out what we want to put inside the program.

:004010B6 85C0 test eax, eax ;if eax is not 0,
you entered the wrong code

:004010B8 0F8519000000 jne 004010D7 ;<- an easy to manipulate jump

This is where we left off. You may also recall that the serial we need is stored at EBP-20 as a string. (If you dont believe
this go to this location in softice and type ’d ebp-20’ to be sure what is stored there ;) What remains is making the code that
will put the string at ebp-20 into the registration code editbox. If you’ve done some win32 coding, you will probably already
know several ways to do this.. I’ll show you a simple one. If we look at the imported functions in this program, we can see
the function SetDlgItemTextA. Looks interesting, right? It should, the definition is:

BOOL SetDlgItemText(
HWND hDlg, // handle of dialog box
int nIDDlgItem, // identifier of control
LPCTSTR lpString // text to set

);

Great, buddy.. and where am I supposed to find all these parameters?!

To find the rest of the parameters, let’s look at the call to GetDlgItemTextA to get our registration number. We need to
do the opposite of it now, which of course, takes mostly the same parameters..

:00401095 6A14 push 00000014 ;nMaxCount
:00401097 8D45EC lea eax, dword ptr [ebp-14]
:0040109A 50 push eax ;lpString
:0040109B 6A65 push 00000065 ;nIDDlgItem
:0040109D FF7508 push [ebp+08] ;hDlg

* Reference To: USER32.GetDlgItemTextA, Ord:0102h
|

:004010A0 E82F020000 Call 004012D4

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

9

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

There, you see? The hDlg and the nIDDlgItem are already stored there.. Life is sweet. Lets put some temporary code down
with the things we know:

lea eax, dword ptr [ebp-20] ;load address of the string into eax
push eax ;push lpString (points to the right serial)
push 65 ;push nIDDlgItem (the ID of the

registration code editbox)
push [ebp+8] ;push hDlg (the handle of the dialog)
call SetDlgItemTextA ;<-- We dont know where this is yet...

Let’s quickly look up where SetDlgItemTextA is, so we can call it and move on to the patching. Open up the program in
W32Dasm, and look at the imported functions. Locate USER32.SetDlgItemTextA and double-click on it. It will take you to a
call to that function.. The program already knows how to call it, lets just follow its example. One of the calls to SetDlgItemTextA
is:

* Reference To: USER32.SetDlgItemTextA, Ord:0228h
|

:004010FA E8E7010000 Call 004012E6

Ok, the function is located at Virtual Address 4012E6

Neat. Still no good to us in a hexeditor though, for that we need to find out its location in the .exe file.. Go to 4012E6
in W32Dasm. There are several ways to do this, one is by standing on the call and pressing the ’call’ button. The we should
see this:

* Reference To: USER32.SetDlgItemTextA, Ord:0228h
|

:004012E6 FF2524204000 Jmp dword ptr [00402024]

You may be wondering why this is a jump, and why you are not in the SetDlgItemTextA function. Well, this is known as
a jump table. The address of the REAL function is stored by windows at [402024], which is where this jumps to. Why this
method is used, is not relevant now, this essay is big enough as it is. What IS relevant however, is that we want the file offset
of this place, instead of the virtual address 4012E6. If it isnt selected already, select the line by doubleclicking on it. You will
now see on the bottom of your screen, in the W32Dasm status bar:

Line:580 Pg 12 and 13 of 15 Code Data @:004012E6
@Offset 000006E6 in File:InjectMe.exe

That means the Virtual Address is 4012E6 and the File Offset is 6E6 Now we have all we need.. Lets take one last look at
the total keygenerator we’re going to inject:

lea eax, dword ptr [ebp-20] ;load address of the string into eax
push eax ;push lpString (points to the right serial)
push 65 ;push nIDDlgItem (the ID of the registration

code editbox)
push [ebp+8] ;push hDlg (the handle of the dialog)
call 6E6 ;Call SetDlgItemTextA

Open up InjectMe.exe in HIEW, go to ASM mode at location .401300 or 700 in the file. (depending on whether you’re viewing
the locations as virtual addresses or file offsets, respectively. You can toggle between the two modes with Alt+F1). Once there,
press F3 followed by F2 and enter the code.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

10

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Keep in mind, the syntax of HIEW is slightly different than that of W32Dasm, so the code will need to be entered like this:

lea eax, d,[ebp-20]
push eax
push 65
push d,[ebp+8]
call 6E6

Press F9 to make the changes permanent when you’re done. Now that we have our keygenerator in place, all that remains is
making sure it gets called.

:004010B6 85C0 test eax, eax ;if eax is not 0,
you entered the wrong code

:004010B8 0F8519000000 jne 004010D7 ;<- an easy to manipulate jump

Thats the jump we’re going to ’hook’. We need that to jump to our keygenerator code, which we stored at offset 700h in the
.exe file. Back to HIEW, we go to edit the ASM at .4010B8 / 4B8 and make it do:

jne 700

Now it should jump to our keygenerator when a wrong serial is entered...

NOTE:
Do not execute the program at this point. It is unstable!

We need to do one last thing. We need to jump back and resume the program after we’ve run our keygenerator. Lets see,
what would have happened if we hadnt intervened with the normal course of the program... It would have jumped to 4010D7,
which is File Offset 4D7 (You may want to check this yourself, go ahead. I’m in no hurry ;) So let’s just jump back there and
pretend nothing has happened. Go to HIEW and edit the ASM at the end of our keygen at .40130E / 70E :

jmp 4D7

Ok, lets see what would happen now IF we were to run the program.

We enter the correct serial -¿ Everything goes like before The protection isnt fiddled with We enter the wrong serial -¿
The program jumps to our keygenerator -¿ The keygenerator enters the correct serial in the registration box -¿ It jumps back to
the original code -¿ the original code displays a ’Bad Cracker’ messagebox Seems like we left nothing out, lets do a test run..
And start the now modified InjectMe.exe Try entering your name again, and press the ’Type 1’ button. Just like you would
using a keygenerator.

WHOA! I CANT BELIEVE IT! IT REALLY WORKS!!!!

It should be working like predicted. We have now successfully installed a keygen right into this program. And WITHOUT
taking a lot of time to reverse the hashing algorithm. We’ve effectively used the program against itself.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

11

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Let’s make one small change for the perfectionists out there. The Messagebox is still showing, lets remove that. Two ways to
do this are:

• NOP-ing out the MessageBox, as if it were a nagscreen
• Jumping back after our keygen, not to 4010D7.. But to right AFTER the MessageBox

Do not underestimate NOP-ing in situations like this. For instance.. If some important code is executed BEFORE the
messagebox, we couldnt just jump past all of it, because then we’d miss that code too.. We’d simply NOP away the messagebox
and be done with it.

However, since simple NOP-ing is overexplained already anyway in thousands of tutorials around the web, I will choose
the second path. Lets take a look at what happens at location 4010D7 in W32Dasm:

* Referenced by a (U)nconditional or (C)onditional Jump at Address:
|:004010B8(C)
|
:004010D7 6A00 push 00000000 ;uType (MB_OK)

* Possible StringData Ref from Data Obj ->"Bad Cracker"
|

:004010D9 6835304000 push 00403035 ;lpCaption

* Possible StringData Ref from Data Obj ->"Try again"
|

:004010DE 682B304000 push 0040302B ;lpText
:004010E3 FF7508 push [ebp+08] ;hWnd

* Reference To: USER32.MessageBoxA, Ord:01BBh
|

:004010E6 E8EF010000 Call 004012DA ;Call MessageBox
:004010EB E96C010000 jmp 0040125C

I’ve already commented the pushed parameters there, according to win32.hlp:

int MessageBox(
HWND hWnd, // handle of owner window
LPCTSTR lpText, // address of text in message box
LPCTSTR lpCaption, // address of title of message box
UINT uType // style of message box

);

So, this code is basically:

MessageBox(hWnd,"Try Again","Bad Cracker",MB_OK);

Yup, thats the one thats been bugging us. So, if we skip JUST the MessageBox, we end up jumping back to .4010EB / 4EB

In this case it seems rather silly to go there, because there’s a jmp there right away as well, to 40125C. But I’ve decided to
teach you good reversing habits, so we will simply jump to .4010EB /4EB In HIEW’s ASM mode, go back to 70E again, and
edit the code (F3, F2) there to read:

jmp 4EB

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

12

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Start InjectMe.exe again, YEA!!! WE DID IT! It looks perfect now. This type of protection is DEFEATED! Reversers -
Protections : 1 - 0

If something went wrong or you dont understand, you can take a look at my version called InjectMe1.exe which is enclosed
in the zip file.

B. Protection 2 - Common

Needless to say, I won’t start from scratch describing this protection.. It is very similar to the first one, with some small
changes to make this slightly more difficult. Its code starts at 401121h.

:00401121 6A14 push 00000014 ;nMaxCount
:00401123 8D45EC lea eax, dword ptr [ebp-14]
:00401126 50 push eax ;lpString
:00401127 6A64 push 00000064 ;nIDDlgItem
:00401129 FF7508 push [ebp+08] ;hDlg

* Reference To: USER32.GetDlgItemTextA, Ord:0102h
|

:0040112C E8A3010000 Call 004012D4 ;Call GetDlgItemTextA
:00401131 85C0 test eax, eax ;Something entered?
:00401133 7461 je 00401196 ;No? Fill in "Lamer"
:00401135 8D55EC lea edx, dword ptr [ebp-14] ;
:00401138 52 push edx ;lpName
:00401139 E845010000 call 00401283 ;Hashing function
:0040113E 8945DC mov dword ptr [ebp-24], eax ;Store hash at [ebp-24]

Now that we’ve got that out of the way, we can get to the parts that ARE different.

Say the program gets the serial again.. But this time, not as a string. It only stores it as a number, never as a string we
could easily use and display.. The Windows API can do this. It has the function GetDlgItemInt which, unlike the rest of its
family, does NOT return a string anywhere. It just assumes the value is a number, converts it for you internally and returns it
in EAX.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

13

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Protection 2 uses this approach. Like I said, it is slightly harder. But should still cause no problems. Lets look at the next bit
of code, which you should see uses the approach i just mentioned:

:00401141 6A00 push 00000000 ;bSigned
:00401143 6857304000 push 00403057 ;lpTranslated
:00401148 6A65 push 00000065 ;nIDDlgItem
:0040114A FF7508 push [ebp+08] ;hDlg

* Reference To: USER32.GetDlgItemInt, Ord:0101h
|

:0040114D E87C010000 Call 004012CE ;Call GetDlgItemInt
:00401152 833D5730400000 cmp dword ptr [00403057], 00000000

;bSigned = false?
:00401159 744F je 004011AA ;Yes? Fill in 0

A quick explanation of this might be in order.. I’ll make it brief, dont worry. Basically, all you will need to understand is the
GetDlgItemInt function and what it does. The Win32 API reference is really indispensable for any kind of decent reversing.
But, as before, I will give you its definition (you better be downloading it in the background if you still dont have it ;):

UINT GetDlgItemInt(
HWND hDlg, // handle to dialog box
int nIDDlgItem, // control identifier
BOOL *lpTranslated, // points to variable to receive

success/failure indicator
BOOL bSigned // specifies whether value is signed or unsigned

);

The results of this bit of code (all of it, not just the call), is as follows:

• If there was a valid number entered, EAX will have it
• If there was no valid number entered, the code will jump to 4011AAh to enter 0 as the registration number

Now we’ve reached the core of this type of protection, a simple compare:

:0040115B 3945DC cmp dword ptr [ebp-24], eax
;is hash equal to the registration code?

:0040115E 0F8519000000 jne 0040117D
;no? Jump to "Bad Cracker" MessageBox

From a coders perspective: Now they are simply compared as numbers, without going through the mess of creating a buffer
and calling wsprintfA and lstrcmp..

SIDENOTE:
That explains why this method is a lot more common than protection 1. Its simply easier as well as more logical for
the coder. It makes little sense to got through all that trouble of converting to strings. (Of course, in this protection
the registration number still has to be converted to a number before comparing. But this is all invisible to the coder
because it is done by the GetDlgItemInt function)

Knowing how to inject a keygen for protection 1 basically means we know how to do this one.. Instead of a SetDlgItemTextA,
we now just use SetDlgItemInt. (Which is already imported too ;) I won’t explain how to do this, since we’ve already done
basically the same thing in the previous chapter. Instead, I’ll pretend this is harder than it really is. I’ll pretend SetDlgItemInt
isnt imported.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

14

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

We now have two options:

• Convert the number to a string and then use SetDlgItemTextA
• Import SetDlgItemInt and use that

I’ll go for the first option in this case, since wsprintfA is already imported (if we’d have to import that ourselves, we might
just as well have imported SetDlgItemInt straight away) Don’t worry, I’ll demonstrate the 2nd method in the 3rd protection (a
worst case scenario). Let’s think about what we’re going to do again. We’re going to insert the keygen at this point:

:0040115B 3945DC cmp dword ptr [ebp-24], eax
;is hash equal to the registration code?

:0040115E 0F8519000000 jne 0040117D
;no? Jump to "Bad Cracker" MessageBox

This jne will then point to our keygen code, as before. The correct serial will be stored at [ebp-24] in number form. A quick
summary of what our keygen will do:

push RightSerial ;dword ptr[ebp-24]
push lpFormatString ;the address of "%lu"
push lpBuffer ;the address of some empty space..
call wsprintfA ;conversion to string
push lpBuffer ;the address of the right serial now in string form
push controlID ;the registration number editbox ID
push hDlg ;hDlg of main dialog
call SetDlgItemTextA ;set the text
jmp BadMessageBox ;continue the original jump we took

Filling in what we know already gives us:

push dword ptr[ebp-24] ;we just learned this one
push 00403009 ;from the old wsprintfA remember? ;)
push lpBuffer ;we’ll have to find some empty space
call wsprintfa ;we need to file offset of it, which we dont yet have
push lpBuffer
push 65 ;from the GetDlgItemInt for example
push dword ptr[ebp+8] ;the hDlg is used in lots of functions
call 6E6 ;we learned this function’s offset in protection 1
jmp BadMessageBox ;we dont know its file offset yet

Nice, only a few small things to check, and we can finish this.

NextLine:
We already know the virtual address of BadMessageBox, it is (needless to say I hope): 40117D. To know its offset we select
the line in wdasm, and look at the status bar. Its offset is 57Dh. Thats one param done.

wsprintfA:
Again, we know its virtual address. We can see that by looking at a call to it. Remember in protection 1:

* Reference To: USER32.wsprintfA, Ord:02A5h
|

:00401090 E827020000 Call 004012BC ;call wsprintf

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

15

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Thus, its Virtual Address is 4012BC. Again, we select the line at 4012BC and look at the file offset. It is 6BCh.

lpBuffer: This is the tricky part of this protection.. You need a quick storage place to store your string. Let’s be neat about it,
and keep code and data seperated. (So we wont have to fiddle with the PE object flags). So, we will look at the ’.data’ object,
where the program stores its data too.

Name VirtSize RVA PhysSize Offset Flag
3 .data 0000005B 00003000 00000200 00000A00 C0000040

Alright, seems there is 200h-5Bh=1A5h bytes left over in there. Should be enough right? Lets dump our buffer somewhere in
there.. Let’s say we take a nice round number, and pick 100h inside the .data object... That will be at Virtual Address (You
should know how to do this math now): 400000 + 3000 + 100 = 403100

Told you, a nice round number. We have 100h bytes there left over.. Thats 256 characters, and thats WAY more than we
need for a simple number. (highest number is232 = 4294967296 , which is 10 characters + a terminating ’0’.. never forget
that one.) Ok, now we have enough to complete our ASM source (already converted to HIEW syntax):

push d,[ebp-24]
push 403009
push 403100
call 6BC
push 403100
push 65
push d,[ebp+8]
call 6E6
jmp 57D

You can edit that in now at offset 700h (why change old habits?) The syntax should be correct i think, so HIEW should accept
it. All that remains is having to make our keygen actually get called. To do this, we look back at the conditional jump at
40115Eh (offset 55E) and change that to a nice

JNE 700

to jump to our keygen in case of a wrong serial. Same as before. Make the change now, and press F9 again to update the
file. When you’re done, try running the program and using protection 2. You should see similar results as with the previous
chapter.

Whoa! Niiice...

Lets remove the ugly MessageBox again, and change the last JMP in our keygen to

JMP 591

(If you don’t understand why, I recommend rereading this bit of the previous chapter again) We’re all done here. Another
protection failed, and used against itself... Reversers - Protections : 2-0 (InjectMe2.exe is my .exe file at the end of this chapter,
if there is something not entirely clear, it might clarify things for you)

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

16

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

C. Protection 3 - Worst Case

As the title says, this will be the worst case scenario. That means, we will not use any of the easy parts, and pretend they’re
all not there. No use of SetDlgItemInt, no SetDlgItemTextA, and a few more things we might have taken for granted now.
You will see what I mean. The reason for this chapter is simple. This way you’ll know what to do no matter how the target
is constructed. A normal program will not have all these complications at once probably, but it is common that one of them
will occur.. The average protection is a combination of this chapter and the previous one.

The code for this protection starts at 4011C7h

You can look at the disassembly for yourself, and you will notice the code to get our name and serial are the exact same as
protection 2.. The hashing of the username is the same.. It’s stored at [EBP-24], just like before. Everything is EXACTLY the
same.. Up to the point where the two serials are compared, at 401201:

:00401201 3945DC cmp dword ptr [ebp-24], eax
;is hash equal to the registration code?

:00401204 7516 jne 0040121C
;no? Jump to "Bad Cracker" MessageBox

Are you kidding me? Thats exactly the same as before!

If you look closely at the JNE.. You will see a vital difference with the previous ones. I will put them next to eachother
to make it more obvious:

:0040115E 0F8519000000 jne 0040117D
ˆˆˆˆˆˆˆˆˆˆˆˆ
6 bytes

:00401204 7516 jne 0040121C
ˆˆˆˆ
2 bytes!

How can that be? They’re both JNE instructions...

There are different types of jumps. Some are short jumps (255 bytes maximum), some are far jumps(2 32 bytes maximum)
Some are relative from the current location.. Some are constant. etc, etc.. You get the idea. This is our first problem in the
protection. It is a short, relative jump. To illustrate:

:00401204 7516 jne 0040121C ;jump if not equal

75 = short relative jump

16 = SIGNED (-128 to +127 bytes) offset from the next instruction which is at 401204 + 2 (=size of the JNE) = 401206

(401206 + 16 = 40121C, as wdasm already translated for us)

Now think about why this might cause a problem. Right. We can not jump to our keygen code at 401300, because it is
out of range. The furthest it could have jumped is 401206h + 127 = 401285h (Note that 127 is in decimal, while the address is
in hexadecimal) We will need to find another way of dealing with this... I’ve thought for a moment what the neatest technique
would be to teach you. (As in most reversing matters, there are many ways to do things. You are only limited by your own
skill and imagination) The simplest way that occurs to me (though it still seems a little sloppy), is overwriting the ”Bad
Cracker”-MessageBox with a far jump to our keygen code. We aren’t going to use the MessageBox anymore after all, right?
So, to summarize, we will still use the old JNE to jump to the ”Bad Cracker”-MessageBox. But once there, the code will now

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

17

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

only be a far JMP to our keygen code. (note that it is now and unconditional JMP, since the program has already determined
we have entered a wrong serial number) We now can not jump back at the end of our keygen and still show the MessageBox.
Instead, we will jump back to the code right after it, just like we did before.. This time ’right after the MessageBox’ is Virtual
Address 401230h. (File Offset 630) I’ll assume you know by now how I got these values.

Now we know how to modify the program to jump back and forth to our keygen, let’s focus again on the keygen itself.
We will have to somehow display the value that’s stored at [EBP-24], same as last time. Showing you the same thing again
would be rather pointless I’d say, so let’s ”invent” some more complications.

Let’s for example assume that neither SetDlgItemInt and wsprintfA are imported.. Now we’re in trouble, since there is no easy
way left to convert the number at [EBP-24] into a string to be put in the editbox.

Again, there are a lot of ways to solve this kind of complication. I’ve decided to just import SetDlgItemInt myself.

Let’s do this API importing the proper way, by putting it in the import table of the PE file. The ’other’ way would be calling
GetModuleHandle and GetProcAddress to find the location of the function. You run into trouble with this method though,
because not all programs import both these functions. (This program is a good example, it doesn’t import GetProcAddress) I’ve
considered going into detail now about how to change the import section of this executable, but I’ve decided to stay on-topic
this time, because I fear I would be drifting too far away from the matter at hand, which is the keygen Injection. So, we will
use a ready-made tool to add the import instead of doing it by hand with a hexeditor. A tool to do this is called iidking and
was made by SantMat of Immortal Descendants. Lets download and run it! It will allow you to specify a .dll and a function
inside it, which you want to import in your program. It will also generate a text file specifying where you can call the function
(In our case ”InjectMe3.exe.txt”). In our case, we select the .exe file, enter ”User32.dll” as dll name, and ”SetDlgItemInt” as
function. In the text file it shows us exactly how we can now call the SetDlgItemInt function, so we no longer need to ’look
it up’ in a disassembly. In this case the files says:

SetDlgItemInt: call dword ptr [40506C]

NOTE:
This program does some serious messing around inside the .exe file. It will still run, but programs like wdasm and
hiew will start complaining the file is ’strange’. In other words, you may want to keep an original copy of the .exe
for looking things up.

We can now use the SetDlgItemInt function at 40506Ch. This function is very useful for what we want to do, because it’s a
combination of two things:

It converts a number to a string
It writes this string to a dialog item (like SetDlgItemTextA)
The parameters it takes are as follows:

BOOL SetDlgItemInt(
HWND hDlg, // handle of dialog box
int nIDDlgItem, // identifier of control
UINT uValue, // value to set
BOOL bSigned // signed or unsigned indicator

);

We already have the first 2 from the other protections. The uValue is the correct serial, which -as noted in the previous chapter-
is stored at [ebp-24]. The last parameter we will need is bSigned, which is TRUE if uValue is a signed number, and FALSE
if it’s unsigned. It is unsigned, so we will push 0 (FALSE). We once again have all we need.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

18

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

So let’s see the code:

push 0 ; bSigned
push d,[ebp-24] ; uValue
push 65 ; nIDDlgItem
push d,[ebp+8] ; hDlg
call d,[40506C] ; SetDlgItemInt, freshly imported :)
jmp 630 ; 401230h, remember?

Let’s put it into the .exe file, at 700h as we did before. Don’t forget to add the unconditional JMP at 40121C/61C to make
the program actually USE the keygen.

Fuck me.. It actually works.

Even with complications like this it’s still fairly simple to inject a keygen, as long as you know the right tricks. I’ll end
this chapter by saying: Use Keygen Injection. Use it wherever you want. It is quick, it is clean. It is for some odd reason,
heavily underused. Hopefully this essay will have explained all there was needed to know to understand this technique, there
really isn’t much more to it. The rest is just tips tricks.

IV. Final words

These were all fairly simple protections.. Most protections are in essence as simple as the first 2 protections. In the last chapter
I’ve given you two of the most common problems, and handed you two solutions. If you can think of another way to solve
them, by all means do so. I change my methods constantly, whenever I think of something new. There are of course also a
lot of other (less common) problems which *might* arise when injecting a keygenerator. Don’t get discouraged, quite often
they are rather easy to solve. If you feel you have tried all you can, come into #Cracking4Newbies and ask a question.

NOTE:
Please think what EXACTLY you want before asking, because we can’t and won’t help you with questions like ”I’m
stuck. Help.” Cracking is a difficult hobby, we can’t explain every little thing every time. Thats why we write essays
;)

I have plans for a next essay with ’tips & tricks of KI’. It will be a short reference featuring problems and solutions encountered
by me or other people. It will be published in my Webbithole when it is made and ready.

-[The End]-

Kwazy Webbit

V. Greetings

Greetings go out to:
The oldleetos. You know who you are.
The reversers i know from c4n and other places around the net.
My friends in real life: Why the hell are YOU reading this?! :P
Most importantly: The people who think further than others. The select few who have innovative ideas. Thank you for having
your own opinion.

For comments and suggestions, send an e-mail to:
KwazyWebbit(at)hotmail(dot)com

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

19

