
c© The CodeBreakers-Journal, Vol. 1, No. 1 (2004)
http://www.CodeBreakers-Journal.com

Coding Smart And Dynamic Code - For better protections, and for the art of it!

Author: The +Q

Abstract

Running code is beautiful, isn’t it? Small islands of code
floating in a vast sea of data. Those code islands must run
in a strict, pre-defined way in order to work. Normally you
would have dozens of files in memory, and even more threads,
running on a single CPU. The outcome can be a cool 3D
FPS, a MP3 player or even a word processor. The sheer
complexity is mind blowing. Think what happens when you
break into Softice. Its like freezing rain drops in mid air, while
its raining on a vast, green, rain forest. Now imagine you could
not only stop those rain drops, but also make them go upwards!
Imagine you could create thunder and lightning at your will...
Its possible! In this article we are going to explore both old
and new techniques of code manipulation. Dynamic code has
a great value to both low level programming and protections
alike. Here I wish to show you how it can be done.

Keywords: Dynamic Code; Running Code Backwards

Contents

I Pre Build Power - macros 2

II Post Build Power - .map file and the external
patcher 2

III Combining powers - Dynamic Code 3

IV Run Time Power - ”The Running Line” 4

V This is only the beginning... 5

VI Final Words 6

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

I. Pre Build Power - macros

Where would we be without them? Hash functions would take
years to write, code would take an un-usual amount of space,
and the term being lazy would not reach the vast corners it
reaches now. There’s something very elegant in macros. Take
a look at this example:

#define EXP8(X) EXP7(X), EXP7(128+X)
#define EXP7(X) EXP6(X), EXP6(64+X)
#define EXP6(X) EXP5(X), EXP5(32+X)
#define EXP5(X) EXP4(X), EXP4(16+X)
#define EXP4(X) EXP3(X), EXP3(8+X)
#define EXP3(X) EXP2(X), EXP2(4+X)
#define EXP2(X) EXP1(X), EXP1(2+X)
#define EXP1(X) EXP0(X), EXP0(1+X)
#define EXP0(X) ((4*(X)+1)*((X)+1) & 0xff)

static unsigned char hash_table[256] = { EXP8(0) };

hash_table is automatically filled by the pre-compiler with
all byte values 0-255 in a permuted order.

Macros are well implemented in the C++ environment, but
they are much more powerful in MASM environment. Just
peek at MASM’s reference at the keywords as MACRO,
MACRO LOCAL, FOR (IRP) and FORC (IRPC). Amazingly,
MASM’s pre-compiler lets you define local variables inside
the macro, just like in a normal function. Logical and mathe-
matical operations on the variables are supported, and not only
that, but you can also work on each byte from the argument
separately! Macros let you define data and function names
dynamically, and you can even define macros inside macros.
Macros open the door to any cool thing you can think of =)

With macros alone we can write dynamic data - a data array,
that will be automatically encrypted by the pre-compiler. Lets
see what we need to do in order to achieve it:

// Define a macro that takes an
// entire string as argument
EncryptText MACRO text:req
LOCAL cipherByte

cipherByte = 0AAh

// Go through each byte of the string
FORC plainByte, <&text>

// Encrypt it
cipherByte = cipherByte xor ’&plainByte’

// And dump the result as data byte
db cipherByte

ENDM
db 0
ENDM

Now in our source code the data is defined with the macro:

EncryptText < Sin without deceivers
/A God with no believers >

And on the compiled version this data is already encrypted. Of
course in run time we’ll have to decrypt it back to plaintext,
but half the job is done by the pre-compiler. Macros are very
efficient data manipulators.

II. Post Build Power - .map file and the external
patcher

Dynamic code is a bit more problematic. The problem is that
it was never meant to be dynamic! The fact that the code is
marked as a read only section is a proof of that =) The more
serious problem is that we don’t know the final code bytes
before we compile the code. Even if we write it in assembly.
There’s a lot of fine tuning done by the compiler and linker to
make the code workable. Think of function’s stack prologue
and epilogue, or calling an API function, or even assembling
a jump instruction. The bottom line is that the final shape and
form of the code is known only after the build.

Fortunately, the linker provides all the information of the final
code in the .map file. Lets consider the following problem:
code integrity check. If we are going to implement an integrity
check on the code, we’ll need the start address and end address
of the block to check. We’ll also need the correct CRC value to
check against. Now where are we going to get all these values?
Lets consider start and end addresses of the code block. We
can try to get them during pre-compile time. For example,
if we have a project with only one source file to compile,
we’ll also have one .obj file, which means that the order of
the functions in the source code will also appear in the final
.exe file. CRCing one function is also a simple deal - just
put BlockStartPtr: above the function, and BlockEndPtr: just
below it, and send them to the CRC function. BUT, what are
we going to do when we have more than one source file? or
if we want to check sum the entire application? and how are
we going to get the correct CRC value, and store it back in
the code, anyway?

The remedy is a new tool we’ll build specifically designed
for our work. An external patcher program that will read the
application, manipulate or checksum whatever code we want
and even send post-build information back to the application.
Its all in our hands now!

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

2

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

The external patcher needs to communicate with the applica-
tion, and for this we’ll write a special structure:

in asm:
EP_INTERFACE_MAGIC equ 49494949h

EP_TARGET_INTERFACE STRUCT
_interfaceFlag DWORD EP_INTERFACE_MAGIC
_crcBlockStart DWORD ?
_crcBlockEnd DWORD ?
_crcCorrectValue DWORD ?
EP_TARGET_INTERFACE ENDS

or in C++:
#define EP_INTERFACE_MAGIC (0x49494949)

#pragma pack(push, 1) // no data structure alignment
struct EP_TARGET_INTERFACE
{
DWORD _interfaceFlag;
DWORD _crcBlockStart;
DWORD _crcBlockEnd;
DWORD _crcCorrectValue;
};
#pragma pack(pop)

Please notice the_interfaceFlag dword. The external
patcher needs to locate the structure in the file, so this flag,
initialized with an un-common magic dword, marks the start of
the interface. To accomplish code integrity check, the external
patcher grabs both the application’s .exe file and .map file.
From the .map file our patcher calculates the application’s
image start and end addresses - it can be the entire image,
(the entire .text section) or it can be a specific function.
Next the external patcher opens the .exe file, and locates the
interface with the aid of the flag dword. The external patcher
performs the check sum of the specified code block, and
stores both addresses and the correct result back to the exe, in
the interface. At run time, the application grabs these values,
which are now valid, and performs the integrity check! Please
note that the addresses should be converted from RVA, and
proper error handling should be implemented, but the basic
idea is that simple to implement with the aid of the external
patcher.

III. Combining powers - Dynamic Code

Why stop here? Lets work with both pre-build and post-build
powers together! Not always when you add two great things,
you get an even greater combination. I mean, if you play
Beethoven and Mozart together you usually get a classical
noise. But not so in our case. Combining macros and post
build patcher is a beautiful and amazingly powerful technique.

As an example we will write a function that automatically
locks and unlocks itself. Lets see what we need:

1) The code block should be unlocked at runtime. So
we’ll have a loop that encrypts/decrypts the code. The
decryptor will execute at the function’s prologue, while
the encryptor will execute at the function’s epilogue.

2) The code block should be locked in the final .exe file.
This means the external patcher will have to lock the
block after compilation. Which also means we’ll have a
flag at the block’s first opcode, so the external patcher
will be able to locate the block.

Lets start with the macro:

AUTO_LOCK_BEGIN MACRO
LOCAL blockStart, blockEnd, lockLoop

;; init
pusha
mov esi, offset blockStart
mov edi, esi
mov ecx, (offset blockEnd - offset blockStart)

;; decrypt
lockLoop:
lodsb
xor al, 55h
stosb
loop lockLoop

;; goto the beginning of the block
popa
jmp blockStart

;; information for the external patcher:
dd EP_AUTO_LOCK_MAGIC ; flag
dd (offset blockEnd - offset blockStart)
; block size

blockStart LABEL BYTE

AUTO_LOCK_END MACRO
blockEnd LABEL BYTE

;; init
pusha
mov esi, offset blockStart
mov edi, esi
mov ecx, (offset blockEnd - offset blockStart)

;; encrypt
lockLoop:
lodsb
xor al, 55h
stosb
loop lockLoop

;; done
popa
ENDM
ENDM

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

3

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Please notice howAUTO_LOCK_END macro is defined
inside AUTO_LOCK_BEGIN macro. This means that
AUTO_LOCK_END can use all the variables declared in the
parent macro. This is how these macros are used:

ReallyCoolFunctionThatDoesNothingButBragItsProtection
PROC

AUTO_LOCK_BEGIN

;; write what ever we want here...
;; guess what this does ;)
mov esi,edx
xor cl,cl
shld edx,eax,1
shld esi,eax,2
adc cl,0
xor edx,esi
xchg eax,edx
xor dl,cl

AUTO_LOCK_END
ret
ReallyCoolFunctionThatDoesNothingButBragItsProtection

ENDP

The external patcher’s job is to locate this code block, use the
given block size information, and encrypt the code. If there
are more than one block in the file, there will simply be more
flags. The external patcher will go through the entire file, and
locate all these flags.

Here’s a cool optimization to the macro above, that will use
the same decryption loop for both encryption and decryption:

AUTO_LOCK_BEGIN MACRO
LOCAL blockStart, blockEnd, lockLoop, lockMain,

retJunction

;; init
lockMain:
pusha
mov esi, offset blockStart
mov edi, esi
mov ecx, (offset blockEnd - offset blockStart)

;; decrypt
lockLoop:
lodsb
xor al, 55h
stosb
loop lockLoop

;; goto the beginning of the block
popa

;; use SMC to toggle RET / JMP instructions
xor byte ptr [retJunction], 028h

;; sometimes its jump, sometimes ret...
retJunction:
db 0C3h, 8

;; information for the external patcher:
dd EP_AUTO_LOCK_MAGIC ; flag
dd (offset blockEnd - offset blockStart)
; block size

blockStart LABEL BYTE

AUTO_LOCK_END MACRO
blockEnd LABEL BYTE

;; encrypt
call lockMain
ENDM
ENDM

IV. Run Time Power - ”The Running Line”

In an article titled ”Anti Debugging Tricks” posted back in
1994 a technique called ”The Running Line” was described
(apparently, it was first published by Serge Pachkovksy, but
i couldn’t find it). This technique reveals a self tracing,
self modifying code. The idea is really beautiful. Basically,
there’s a tracer function that’s called after every ”normal”
instruction. On this tracer function, you could change the code
dynamically at run-time and return to it. In practice, exception
handling and the trap flag are used. The CPU raises the ”single
step” exception whenever the trap flag is set. Under DOS this
means that int1 is raised. A self-tracing program would take
advantage of this feature, and simply by changing the int1
handler and setting the trap flag, you would have a self-tracing
application.

Fortunately, this technique is also applicable under windows.
Only this time there’s no int1, but a normal exception, and a
normal exception handler. This technique is extremely efficient
against debuggers and dis-assemblers. SoftIce messes the trap
flag, so you cant single step into a self-tracing function, and
under a disassembler a naive code block might change in run
time, thanks to the running line handler. Here’s a simple tracer
that changes one of the code’s instructions:

;; SEH macros
SEH_NODE STRUCT
_prevHandler DWORD ?
_exceptionHandler DWORD ?
SEH_NODE ENDS

PUSH_SEH MACRO sehHandler:req
ASSUME FS:NOTHING
mov eax, fs:[0]
ASSUME eax:ptr SEH_NODE

push sehHandler
push [eax]._exceptionHandler
mov fs:[0], esp
ENDM

POP_SEH MACRO
pop fs:[0]
add esp, 4
ENDM

;; exception handler
ExpHandler PROC c expRecord:DWORD, expFrame:DWORD,

contextPtr:DWORD, dispContext:DWORD
pusha
mov ebx, contextPtr

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

4

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

ASSUME ebx:ptr CONTEXT

;; clear trap flag
and [ebx].regFlag, 0FFFFFEFFh

;; change the opcode to NOP
mov ebx, [ebx].regEip
mov byte ptr [ebx], 90h

popa
mov eax, ExceptionContinueExecution
ret
ExpHandler ENDP

;; Self tracing function
SelfTracingCode PROC

;; set up the handler
PUSH_SEH

;; set the trap flag
pushf
or byte ptr [esp+1], 1
popf

;; this will not be traced
xor eax, eax
;; endless loop - this code will change at run-time
JMP $

;; remove the handler
POP_SEH

ret
SelfTracingCode ENDP

The possibilities of the running line technique are endless. The
tracer is like an invisible storm that can change the code at
run time. Self modifying, self decompressing and even self
compiling code is no fiction.. it can be done =)

V. This is only the beginning...

You can probably guess what im going to say... ”Why stop
here?” Good question! :) Lets combine all the above tech-
niques! The final example we are going to explore is one funky
chicken. We are going to write code that runs backwards.

In theory its very simple, we’ll use the running line handler
to re-set the EIP register one instruction upwards, and then
restore execution for one more step. When this is done on a
block of opcodes, we’ll have a whole block that actually runs
backwards. In practice, if we want to re-set the EIP register
one instruction upwards we’ll have to know the size of the
opcode, and decrease this value from EIP register. Getting the
opcode size is simple:

opcodeStart:
xor eax, eax
db ($ - offset opcodeStart)

And there, we have the opcode, followed by its size. Doing
this for all the opcodes in the block can be a real pain, so
we’ll do it in a macro:

OPREVBEGIN MACRO
LOCAL opcodeStart, opcodeEnd

;; dump the size
db (offset opcodeEnd - offset opcodeStart)

opcodeStart LABEL BYTE

OPREVEND MACRO
opcodeEnd LABEL BYTE
ENDM
ENDM

;; wrap the opcode with the macro above
R MACRO opcode:req
OPREVBEGIN
opcode
OPREVEND
ENDM

;; a block of opcodes, each one has its size attached
R< rol eax, 10 >
R< mov ecx, "hi, " >
R< xor edx, ecx >
R< add eax, "man!" >
R< stosd >

Next we’ll have to make things simpler to the external patcher.
We should supply the block’s beginning address, and its total
size. While we are at it, we’ll make things simpler to the
running line handler:

REV_BLOCK_BEGIN MACRO
LOCAL blockStart, blockEnd

;; set up exception handler to RevHandler function
PUSH_SEH

;; make sure ebp points to opcodes sizes array
mov ebp, (offset blockStart)

;; set trap flag
pushf
or byte ptr [esp+1], 1
popf

;; this runs backwards, so jump to the end =)
jmp blockEnd

;; information for the external patcher:
dd EP_REVERSECODE_MAGIC ; flag
dd (offset blockEnd - offset blockStart)
; block size

blockStart LABEL BYTE

REV_BLOCK_END MACRO
blockEnd LABEL BYTE

;; remove exception handler
POP_SEH
ENDM
ENDM

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

5

The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

In the source code, this is how a block that runs backwards is
implemented:

CoolFunctionThatRunsBackwards PROC
;; mark the beginning
REV_BLOCK_BEGIN

;; every opcode here should have its size attached
R< ror eax, 10 >
R< mov ecx, "what" >
R< xor edx, ecx >
R< add eax, "s up" >
R< nop >

;; mark the end
REV_BLOCK_END
ret
CoolFunctionThatRunsBackwards ENDP

Lets order things a bit. This is the above code after compila-
tion:

{ prologue code ;
< OP_1 size, OP_1 >,
< OP_2 size, OP_2 >,
.
.
< OP_N size, OP_N >,
; epilogue code }

The external patcher’s job is post build code manipulation.
First it finds the block with the aid of the flag. Next it moves
all the sizes to the start of the block, and finally it sorts all the
opcodes one after the other in a reversed order. This is how it
will look after the external patcher’s job:

{ prologue code ;
< OP_1 size >,
< OP_2 size >,
.
.
< OP_N size >,
< OP_N >,
< OP_N-1 >,
.
.
< OP_2 >,
< OP_1 >,
; epilogue code }

The tracer’s job is to grab the opcode’s size from the array, and
decrease it from EIP register. The output of this application
is a full blown function that runs backwards! Sure, it has its
disadvantages, like not supporting jump / loop instructions, but
it beats writing a full disassembler to accomplish this task.

VI. Final Words

What a rush, ahh? Just imagine what more we can do with
these techniques...

For example, we can even combine bothAUTO_LOCK and
REV_BLOCK on the same function, one on top the other. If we
make sure the external patcher first processes theREV_BLOCK
code, and then processesAUTO_LOCK code, then at run time
this function will unlock itself, then execute backwards and
finally lock it self back!

Personally I would like to thank 29A guys for their magazine
and wonderful low level work. I would also like to thank
whoever wrote ”assemblur” crackme (search at crackmes.de
under DOS crackmes). This crackme is a beautiful piece of
work, and it gave me many ideas about how far dynamic code
can go.

And, of course, thank you for reading all this ;)

Cheers,

The+Q

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

6

